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License Information for Reinforcement Learning (EE-568)

> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

> Non-Commercial
> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the
work for commercial purposes — unless they get the licensor’s permission.
> Share Alike

> The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor's work.

> Full Text of the License
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Logistics

> Credits: 6

> Lectures and exercises: Thursdays 13:15-17:00 AAC231 + CM 1 4 (Overflow room)
Except when the overflow hall CM 1 4 is not available:

> 13th March 2025 (week 11)
> 10th April 2025 (week 15)
> 17th April 2025 (week 16)

> Prerequisites: Previous coursework in optimization, probability theory, and linear algebra is required (i.e.,
EE-556 Math of Data). Familiarity with deep learning and programming in python is useful.
> Grading: Attendance! (1pt), 3 Jupyter Notebooks (1pt each), Project (2pts) or Scribe (2pts, only PhD
students may replace the project by writing lecture notes)
> Moodle: My courses > Genie electrique et electronique (EL) > Master
> EE-568 Logistics & Course schedule & Learning materials
> Details: All details are explained in https://go.epfl.ch/rl-moodle (see Logistics & Course schedule)

> TAs: Luca Viano (Head TA), Elias Abad Rocamora (Co-Head TA), Zhenyu Zhu, Leyla Naz Candogan,
Anja Surina, Sanberk Seberst, Francesca Bettinelli, Jean-Sebastien Delineau, Lars Quaedvlieg, Arshia Afzal
and Frank Zhengqing Wu

T\We need to see evidence through Jupyter notebooks and the project that you are participating. No need to come physically to the class.
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Logistics for online teaching

> Moodle: https://go.epfl.ch/rl-moodle
> Zoom: https://go.epfl.ch/rl-zoom

> Switchtube: https://go.epfl.ch/rl-lectures
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Project guidelines

o You can choose one of the following options:
1. Theory project:
> Read 3 theory papers in an active RL research area (we will provide pointers).

> Summarize them, explaining which problems are still open (and maybe solve them!).

2. Practical project:
> Either implementing existing algorithms in new environments or

> Improve existing algorithms on common environments.
> Practical projects are in cooperation with EPFL labs. We will provide a list of labs you are allowed to reach out to.

> In May, there will be a final report (1.5pt) and a poster presentation (0.5pt) of your project.
> You will work in groups of three people (both theory & practice). Registration opens on moodle soon.
o If and only if you are a PhD student, you may choose the following option instead:

3. Scribe: Write lecture notes for a lecture assigned to you with a template we provide (2pts).

> For each option 1-3, please check moodle for the detailed and binding guidelines.
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A paradigm shift in machine learning (ML) applications

o Self driving, industry automation, robotic manipulation, trading and finance, reasoning...

DesPSeEeK ? z s CHATGPT

PERPLEXITY

- https://medium.com/nextgenllm/
https://neptune.ai/blog/reinforcement-learning-applications deepseek-vs-chatgpt-vs-claude-comparison-354bb8487d63
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What is reinforcement learning (RL)?

o Classical definitions:

> Sutton and Barto: Reinforcement learning is learning what to do — how to map situations to actions — so as
to maximize a numerical reward signal.

> WIKIPEDIA: Reinforcement learning is an area of machine learning concerned with how intelligent agents
ought to take actions in an environment in order to maximize the notion of cumulative reward.
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A common theme in RL

o An agent learns to act by interacting with an uncertain environment

)
Reward @ @

State

Environment

-~
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A common theme in RL

o An agent learns to act by interacting with an uncertain environment
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A common theme in RL

o An agent learns to act by interacting with an uncertain environment

State

Reward

INCREASE  DECREASE

Environment

Siry

Source: https://x.com/Josh_Ebner/status/1765108810539024707

Action

The sky is ..

red
blue
clear
sunny
ominous
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A common theme in RL

o An agent learns to act by interacting with an uncertain environment

Nonstationary

Data

Action

Environment

Delayed
feedback
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Remarkable progress on ML applications

o Which one is not due to RL?

Chat GPT

Rubik’s Cube from OpenAl ‘
(sim2real robotic arms) | F

Dota 2 w/
Openal Five

Atari Game from DeepMind:
(high-dimensional input space)

2017

StarCraft Il w/Alpha Star
(real-time strategy)

AlphaGo/ Alpha Zero:

ST 4 (self learning) AlphaFold

(3D protein structure)

ALLSYSTEMSGO

2015
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Perceptions of RL

o Roughly speaking...
> For EE, it is control theory mutatis mutandis:
control — action
controller — agent or policy

system or plant — environment
> For CS, it is an ML paradigm along with supervised and unsupervised learning.

> For others?
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Data Science

Psychology Neuroscience

Reinforcement
Learning

Operations

Research Engineering

Economics
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Challenges to RL

The New York Times

One Giant Step for a Chess-Playing

Machine

“The stunning success of AlphaZero, a deep-leaming algorithm,
erakdea newageof night — one hat,for humans, may not
latlong,

What is frustrating about machine learning, however, is that the
algorithms can't articulate what they’re thinking. We don’t know
why they work, so we don't know if they can be trusted. AlphaZero
gives every appearance of having discovered some important
principles about chess, but it can't share that understanding with
us. Not yet, at least. As human beings, we want more than answers.

3 ’ We want insight. This is going to be a source of tension in our
ALL SYSTEMS GO S s o
interactions with computers from now on.

o Theoretical foundations are more important than ever.
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Challenges to RL

The New York Times DeepSeek's reasoning Al shows power of

small models, efficiently trained
One Giant Step for a Chess-Playing

Machine 1MIT
The stunning succes of AlphaZero, a deep-laming algorm, lechnology suescrine
heralds a e age of insight — one tha,for humans, may not Review

lastlong,

What is frustrating about machine learning, however, is that the
algorithms can't articulate what they’re thinking. We don’t know
why they work, so we don’t know if they can be trusted. AlphaZero
gives every appearance of having discovered some important
principles about chess, but it can't share that understanding with

ARTIFICIAL INTELLIGENCE

OpenAlreleases its new 03-minireasoning
= us. Not yet, at least. As human beings, we want more than answers. model for free
ALLSYSTEMSGU ‘We want insight. This is going to be a source of tension in our

interactions with computers from now on. more acourate thanits predecessor.

OpenAljustreleased o3-mini, a reasoning model tha's faster, cheaper, and

o Theoretical foundations are more important than ever.

o Common challenges with ML: Robustness, interpretability, scalability, reproducibility, reward, etc.
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Perceptions of our RL course (EE-568)

o Why are you taking this course?

>

>

lions@epfl

Learn the basics of RL

Gain hands-on experience with RL implementations
Apply RL to my research

Might be useful for my future job

Just need the credits

Other reasons?

Let us know https://go.epfl.ch/rl-expectations-2025
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What are our learning objectives?

o By the end of the course, participants will be able to

> Define the key features of RL that distinguishes it from standard ML

> Identify the strengths and limitations of various RL algorithms

> Understand the theoretical properties of RL algorithms

> Recognize the common, connecting boundary of optimization and RL

> Formulate and solve sequential decision-making problems by applying relevant RL tools

> Generalize or discover “new” applications, algorithms, or theories of RL towards conducting research
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What EE-568 is really about: Theory and methods

Simplex (Dantzig)
Stochastic Approximation (Robbins & Monro)

Interior Point Method (Karmarker, Nemirovski, etc.)
Accelerated GD (Nesterov)

Boom of SGD and first-order methods
Kingma and Ba, Adam  (ICLR, 2015)

Stochastic Convex i
Programming Programming Stochastic
Optimization o
Nonconvex Optimization

1940s - 19505 + 1980s s 20005 T 2020s

Deep Reinforcement Learning

Dynamic - Policy .
Progyrammin Villlté?:hlz)%s:d Optimization
DeepMind, DQN (Nature, 2015)
Boom of policy gradient methods
Policy Iteration (Howard) Q-Learning (Watkins)

Linear Programming TD Learning & Actor-critic (Sutton, Barto, etc.)
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What EE-568 is not really about: Product development

o The following important topics are beyond the scope of this course:
> Coding tricks and super practical implementations of RL
> Product development of RL in real-world
> RL engineering
> Physically building autonomous robots
> Physically building autonomous driving systems

> Building GPT-03-scale systems with RLHF
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Should | take this course?

o This course is right for you, if you
> want to understand the RL foundations
> have interest in performing RL research
> have strong math background

> want to gain hands-on experience with RL

o This course may not be right for you, if you
> only want to gain hands-on experience with RL
> are not interested in formulating RL in applications
> have only basic math background

> want to develop deep learning expertise
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What is left for the course?

o A preview of the course

> Dynamic Programming > Imitation Learning and Inverse RL
> Value Iteration > Behavior Cloning, GAIL
> Policy lteration > Interactive IL (DAgger, SMiLe)
> Monte Carlo Methods > Max Margin and Max Entropy IRL
> TD, SARSA, Q-learning > Deep and Robust RL
> Linear Programming > Deep Q Network and Extensions
> Primal-Dual RL, REPS, Proximal Point > Deep Actor-Critic (A3C, DDPG, TD3)
> Applications to offline RL > Robust DDPG/TD3
> Policy-based RL » Alignment and Reasoning with RL
> Policy Gradient Method > Language Models
> Natural Policy Gradient Method > RL from Human Feedback
» TRPO and PPO > Reasoning
Bellman Equations Stochastic Approximation
Theory Policy Gradient Theorems Optimization and Game Theory
Performance Difference Lemma | Convergence Analysis
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What'’s beyond?

lions@epfl

Episodic RL

Strategic Exploration in RL
Batch and Offline RL
Safety in RL

Multi-task RL
Preference-based RL
Causal RL

Partially Observable Markov Decision Process (POMDP)
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Where to go from here?

o Upcoming events:
> Mannheim Workshop on Reinforcement Learning 2025
https://www.wim.uni-mannheim.de/doering/conferences/r1-2025
> European Workshop on Reinforcement Learning, 2025
https://ewrl.wordpress.com
> RL Conference, 2025
https://rl-conference.cc

> Workshops at NeurlPS, ICML, ICLR, AAMAS, etc. (TBA)

[e)

Recent workshops:

> Foundations of RL and Control: Connections and New Perspectives, ICML 2024
https://rl-control-theory.github.io

> Aligning Reinforcement Learning Experimentalists and Theorists, ICML 2024
https://arlet-workshop.github.io

> Workshop on Open-World Agents, NeurlPS 2024
https://sites.google.com/view/open-world-agents/home
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Where to go from here? (cont’d)

o Seminars:
> RL Theory Virtual Seminar:
https://sites.google.com/view/rltheoryseminars/
> Simons Institute Theory of RL:
https://simons.berkeley.edu/programs/theory-reinforcement-learning

> Simons Institute Learning and Games:
https://simons.berkeley.edu/programs/games2022/workshops#simons-tabs
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Questions

That’s it! Any questions?

IHHEL]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 23/ 56



Questions

Let’s start! Dynamic Programming |
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A refresher on Markov chains — |

Definition (Markov Chain)

A (time-homogeneous) Markov chain is a stochastic process {Xo, X1, ...}, taking values on a countable

number of states, satisfying the so-called Markov property, i.e.,

P[X¢11 = | Xt =4, X¢—1,. .., Xo] = P[X¢y1 = j| Xt = 4] = Pyj.

Markov Process
Markov process is a triple (S, P, ), where st Pi
> S is the set of all possible states;

> the matrix P with entries [P],,, = P(s'|s) is the
transition matrix over S; Piz1i- Piic1 Pis1i

> 4 is the initial state distribution: sg ~ p € A(S).
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A refresher on Markov chains — |I

Definition (Stationary distribution)

If a Markov chain is irreducible and aperiodic with finite states (i.e., ergodic), then there exists a unique
stationary distribution d* and {X:} converges to it, i.e., limtﬁoo[Pt]ij = dJ*-,Vi,j. We can represent this via
d* = d"P where [P];; = P;; and d* is a row vector. Hence, d* is the left principal eigenvector of P.

Remarks: o Irreducibility:

> A Markov chain is irreducible if it is possible to reach any state from any state.
> Ensures the chain forms a single communicating graphical model.

o Aperiodicity:
> A Markov chain is aperiodic if every state has a period of 1.
> Prevents the chain from getting stuck in cycles, allowing thorough mixing.

o Practical Implications:
> Convergence: Irreducible and aperiodic chains converge to a unique stationary distribution.
> Ergodicity: Enables estimation of long-term averages by simulation.

> Mixing Time: Affects the efficiency of simulations and probabilistic modeling.
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Markov Decision Processes (MDPs)

Markov Decision Process
An MDP is a tuple (S, A, P,r, u,7), where

> S is the set of all possible states. > r: S x A— Ris the reward
> A is the set of all possible actions. function. We assume r € [0, 1].
> For each action a, the matrix P? > p is the initial state distribution
with entries [P%] . = P(s'|s, a) so ~ p € A(S).
is the transition matrix > v is the discount factor:
(S x A— A(S)). v € (0,1).
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MDPs: Discount factors and Ergodic chains

Discounting

Let p € A(S) be the initial state distribution and v € (0,1) the discount factor. By discounting, we implicitly
mean that we move forward in visiting the states in time, where we sample the next state in the chain using

o N{ P(-|s,a) with probability ;

°w with probability 1 — ~.

Remarks: o In practice, this represents that the agent re-starts from scratch with probability 1 — .

o The MDP resulting from this process is ergodic if u; >0, Vi =1,2,...,|S|.

Example:
Py =1 Poo = (1 =v)ro Po1 = +(F;",j)7q
Q +(1 = vm
Poo =0 Q S
S Poy =1 S S0 S1
0——°1
Pro = ~—
Pro = (1= 7)po

Figure: Non-ergodic chain
Figure: Ergodic chain

Exercise: o Prove it!
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Example: Gridworld

o State S: the agent's position
o Action A: moving north/south/east/west

o Reward r:

> -1 if moving outside the world A B

> 410 if moving to A \ +9)

> +5 if moving to B +10] B 4—I_>
> 0 otherwise A Actions

o Transition model P:

> move to the adjacent grid according to the direction
> stay unchanged if moving toward the wall

> transit to A’ if moving into A, transit to B’ if moving into B

IHHEL]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 28/ 56



Example: LLM reasoning

o State S: output tokens in response to a question

. . The sky is ..
o Action A: generating the next token

This probability
distribution shows

o Reward r: the probabiy that —
ewa T a particular token

will be selected

> 0 if the response is not finished? The tokens bluet
and "clear" are
most probable.

> +1 if the response is finished and correct

2]
=)
o
=]

A
£
S)

> -1 if the response is finished and wrong

L. LLM Output
o Transition model P: Step

I_>

> . . _
generate the next token if the response is not finished Figure: Next-token generation paradigm.

» aWait evaluation Of reWard |f the response is ﬁnished https://x.com/Josh_Ebner/status/1765108810539024707

signified by the generation of an end-of-sentence token in implementation
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MDPs: policies

What is our goal?

Find a behaviour or rule to make decisions that maximize the expected return.

o In general, a policy selects an action based on the history h¢ := (S0:¢,a0:t—1) := (S0,@0, .-+, St—1,0t—1,S¢t)
> A stationary Markov policy is a mapping 7: S — Aor w: S — A(A),

> A is the appropriate probability simplex.

Deterministic Policy Randomized Policy:
> Stationary policy m: S — A, ar = m(s¢) > Stationary policy m: S — A(A), az~m(:|st)
> Markov policy 7 : S — A, at = m¢(st) > Markov policy m¢ : S — A(A), ag~me(-|st)
> History-dependent policy m : Hy — A > History-dependent policy 7 : Hy — A(A)
> . is the set of histories up to time . > . is the set of histories up to time t¢.
> ap = Tl't(ht) > llt~7ft('|ht)
Remarks: o The infinite horizon objective can be maximized by a stationary deterministic policy.

o The finite horizon objective needs instead a (nonstationary) deterministic Markov policy.
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From MDPs to performance criteria

Reminder: o We have described the role of MDPs while establishing a performance criterion.
> Finite Horizon: Cumulative reward and average reward.
> Infinite Horizon: Discounted reward and average reward.

o In this course, we mainly focus on discounted infinite-horizon MDPs:

S0 ~ My T

J(r)=E Z'ytr(st,at)
t=0

o We use v € (0, 1) to trade off past and present rewards.
Observations: o If v = 1, the total reward may be infinite, e.g., when the Markov process is cyclic.

o With v € (0,1), assuming bounded rewards, i.e., r < oo, the total return will always be finite.
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Value functions

Definition (State-Value Function)

oo

VT(s)i=E| Y _v'r(se,ar) [ so=s, 7

t=0
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Value functions

Definition (State-Value Function)

oo
V™(s):=E Z'ytr(st,at) | so=s, =

t=0

Definition (Quality Function / State-Action Value Function)

o0
Q™ (s,a) :=E Z’ytr(st,at) |so=s, ao=a, «

t=0

Observations: o V™ (s) represents the total expected return starting at state s under policy 7.
o Q™ (s, a) represents the total expected return when choosing action a in state s under policy .
o For convenience, we may drop the 7 in RHS when it is clear from the context.

Remark: o In the literature, state-value function and value function are used interchangeably.
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Value functions (cont’d)

Pop quiz: o What is the relation between V™ and Q™7
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Value functions (cont’d)

Pop quiz: o What is the relation between V™ and Q™7
Answer: o For any policy 7 : S — A(A), it holds that

Q™ (s,a) =7r(s,a) +WZ s'|s,a)V™(s")

s'eS

() = Y 7(als)Q(s,0)

acA
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Proof of equation (1)

Derivation:

oo
Q@ (s0) =[S sr(sian) o= s, a0 =a. 7]

o0
=r(s,a) + E[Z lfytr(st,at) | so =s, ap = a, 7r:|
=

ILHEL]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 34/ 56



Proof of equation (1)

Derivation:

oo
7Ts,a:IE,{ tr(st, a s0=3s,a :a,w}
Q7 (s,a) thov(t t) | 50 0
b
=r(s,a +E[ r(st,a S0 =S8, a :a,7r:|
() +E|Y ~ a'r(se,ar) | s0=s, a0
o0
=r(s,a)+ Ps's,a E{ tilrs,a S0 =38, S =5, a :a,ﬂ]
(00 +7 ) P'lsa) B~ 5" r(se,a) [ 50 =5, 51 0

s'eS
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Proof of equation (1)

Derivation:

Q7(s,a)

oo
B[S strisnan) so =5, a = a1
t=0

o0
=r(s,a) +E[Z vir(si,at) | so =s, a0 = a, W}
t=1
o0
=r(s,a) +~ Z P(s'|s,a) E{Z V(s a1) | so =8, s1 =5, ap = a, TI':I
t=1
s'eS

o0
=r(s,a)+7 Z P(s'|s, a) E{Zt717t717‘(5t7at) | s1 =5, w} (Markov assumption)

s'eS
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Proof of equation (1)

Derivation:

Q7(s,a)

ILHELI]  Reinforcement Learning | Prof.

oo
E{ E Yir(st,at) | so = s, ap = a, 71'}
t=0

o0
= r(s,a) +E[ E l'ytr(st,at) | so =s, ap = a, 7r:|
=
o0
=r(s,a)+7v E P(s'|s,a) E{ E t_17t71T(5t7at) | so=3s,81=5,a0=a, TI':I

s’eS
o0
=r(s,a)+7 E P(s'|s, a) E{ g V(g a0) | 51 =8, w} (Markov assumption)
t=1
s'eS
oo
=r(s,a)+vy E P(s'|s,a) E E Yir(st,ar) | so =8, (i.e., V”(s’))
s'eS t=0
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Proof of equation (1)

Derivation:

Q7(s,a)

oo
E{ E Yir(st,at) | so = s, ap = a, 71'}
t=0

o0
r(s,a) + E[Z l'ytr(st,at) | so =s, ap = a, 7r:|
=

r(s,0)+7 > PEls,a) B[S 4 rlsnan) | so

!
*8751:s,a0:a,7r]

s'eS
o0
=r(s,a) +~ Z P(s'|s,a) E{Z V(g a0) | 51 =8, w} (Markov assumption)
s'eS =t
oo
=r(s,a)+~ Z P(s'|s,a) E Z'ytr(st,at) | so =58, 7 (i.e., V”(s’))
s’'eS t=0
=r(s,a)+vy Z P(s'|s,a) V™ (s")o
s'eS
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Optimal value functions

o Let IT be the set of all (possibly non-stationary and randomized) policies.

Definition (Optimal Value Function) Definition (Optimal Action-Value Function)
V*(s) := max V™(s) Q*(s,a) := max Q7 (s,a)
mell mwell
Pop quiz: o What is the relation between V* and Q*?
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Optimal value functions

o Let IT be the set of all (possibly non-stationary and randomized) policies.

Definition (Optimal Value Function) Definition (Optimal Action-Value Function)
V*(s) := max V™(s) Q*(s,a) := max Q7 (s,a)
mell mwell
Pop quiz: o What is the relation between V* and Q*?
Answer: Q*(s,0) = r(s,0) +7 Y P(s/]s, a)V*(5') 3)
s'eS
V*(s) = max Q* (s, a) (4)
acA

o Self-exercise: prove equation (4).
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Solving MDPs: find the optimal policy

Goal

Roughly speaking, the ultimate goal in RL can be summed up to finding an optimal policy #* € II such that

V™ (s) = V*(s) := max V™ (s),Vs € S.

mwell
Remark: o The optimal policy may not be unique, while V* is unique.
Key Questions
> Q1: Does the optimal policy 7* exist?
> Q2: How to evaluate my current policy m, i.e., how to compute V7™ (s)? —policy evaluation
> Q3: If * exists, how to improve my current policy m, i.e., how to find 7*7? —policy improvement
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Bellman optimality conditions

o The optimal value function V* is the unique fixed point of the following equation:
V*(s) = max |[r(s,a)+~ Z P(s'|s,a)V*(s")
acA
s'eS

Remarks: o This requirement is also known as the Bellman optimality equation.
o We will show that there exists a deterministic optimal policy.

o Fixed-point perspective motivates value iteration (V1) and policy iteration (Pl) methodologies.
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Existence of an optimal policy

Theorem (Existence of an optimal policy [1] [2])
For an infinite horizon MDP M = (S, A, P,t, ,7), there exists a stationary and deterministic policy  such
that for any s € S and a € A, we have

V7(s) =V*(s), Q"(s,a) =Q"(s,a).

Remarks: o Finding m* can be done by first computing V* or Q*.

o Note that we can directly get a (deterministic and stationary) optimal policy from Q*:

m*(s) = arg max Q* (s, a).
acA

o Note: Proof of the theorem can be found the supplementary slides #2.
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Bellman consistency equation

Theorem (Bellman Consistency Equation)

V™(5) = Bann(ls) | 7(5,0) +7 Y _ P(s'|s,)V™ () (BCE)
s'eS

Richard Ernest Bellman
(August 26, 1920 - March 19, 1984)
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Bellman consistency equation
EmE

TS

Theorem (Bellman Consistency Equation)

V7™ (s) =Eqmn(|s) |7(s,a) + E P(s'|s,a)V"(s") (BCE)
Richard Ernest Bellman s'€S
(August 26,1920 - March 19, 1984)
Remarks: o BCE is also known as Bellman expectation equation.

o BCE states the value of a state under a given policy 7, which is

> the expected return starting from that state, taking an action according to the policy,

> .. and thereafter following the policy....
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Bellman consistency equation

Theorem (Bellman Consistency Equation)

V™(5) = Bann(ls) | 7(5,0) +7 Y _ P(s'|s,)V™ () (BCE)
s'eS

Richard Ernest Bellman
(August 26, 1920 - March 19, 1984)

Matrix Form

We can concisely represent the Bellman consistency equation in the following matrix form: V™ = R™ +~yP"™V ™.
o We can derive from equations (1) and (2): o We can write, with |S| being the cardinality of S:
VT eRIS VI =V (s);

R™ e RISl RT .= Z m(als)r(s,a);

acA
Vi(s) = Y mlals)Q7(s,0) 2) P e RISXISI pT o= N w(als)P(s | 5,a).

acA acA

Q" (s,0) = r(s,0) +7 Y P(sls,)V(s) (1)

s'eS
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Closed-form solution for policy evaluation

Closed-Form Solution of V'™

Given the matrix form of BCE, we have the following closed-form solution: V™ = (I — 'yP”)_lR”.

Remarks: o This is one of exact solution methods for policy evaluation.
o Note that the matrix I — yP7™ is always invertible for v € (0,1).
o The solution of Bellman equation is always unique.

o Computation cost: O(|S|? + |S|?|.A|), which can be expensive for large state spaces.
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Bellman expectation operator and fixed-point perspective

Definition (Bellman expectation operator)

The Bellman expectation operator T™ : RISI — RIS| s defined by the following expression

T™V :=R™ +~P™V. (5)

Remarks: o BCE implies that V™ is the fixed point of 77: T"V™ = VT,
o 7™ is a linear operator and is a y-contraction mapping.
o The solution of BCE is always unique.

o For the following iteration invariant Vi1 =77V, t =0,1,..., it holds that

lim (77)"'Vo = V7.

t—o0
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Bellman optimality conditions

Theorem (Bellman optimality equation)

The optimal value and action-value functions satisfy the following equations:

V*(S):Ianeaj rsa)+'yz (s'|s,a)V*(s") |,

s'eS

Q" (s,0) = r(s.0) +7| D A1) (max @ (',

s'eS

Remarks: o These requirements are also known as Bellman optimality conditions.
o Obtained by combining equations (3) and (4).

o Fixed-point perspective motivates value iteration (V1) and policy iteration (Pl) methodologies.
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Bellman optimality operator

Definition (Bellman optimality operator)

We define the following operator T, which will be useful when discussing value-iteration in the sequel:

(TV)(s) :=max [r(s,a)+v E s'ls,a)V (s |. (BELLMAN OPERATOR)
a€A %
ES

Remarks: o The optimal value function V* is the fixed point of T, i.e.,
TV =V™*.
o The Bellman optimality operator is a y-contraction mapping w.r.t. £oo-norm (proof in slide #4):
lTv' =7Vl <Av'-Vvi
o The Bellman operator is also monotonic (component-wise): V/ <V = TV' < TV.

o We can define a similar Bellman operator on the @Q-function and show similar properties.
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Pause and reflect

o Before we move on, take a minute to reflect on these important notations:

>, 7w, V7(s), V*(s), Q7(s,a), Q*(s,a), T™, T
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Solving MDPs

o What we talked about:
> Optimal state-value function (V*(s)) and optimal action-value Function (Q*(s,a)).
> Bellman consistency equation (V™ = R™ +yP™V7).
> Bellman expectation operator and fixed-point perspective (7T™V := R™ + yP™V).
>

Bellman optimality equations and Bellman optimality operator.

o How do we use this to do “planning,” i.e., finding an optimal policy via MDPs (our goal)?

Algorithm Component Output
Value Iteration (VI) Bellman Optimality Operator T Vi such that ||[Vp — V*|| <e
Policy Iteration (Pl). | Bellman Operator 7™ + Greedy Policy V* and *
Observation: o These solutions require, and we assume throughout, that the transitions dynamics are known.
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Value iteration (VI)

Algorithm: Value lteration (VI) for solving MDPs

Start with an arbitrary guess Vg (e.g., Vo(s) = 0 for any s)
for each iteration ¢ do

Apply the BELLMAN OPERATOR 7 to the current value estimate V;:
Vie1 =TV

end for

*

Remarks: o Finding V* or * is equivalent to finding a fixed point of 7.

o Value iteration can be therefore viewed as a fixed-point iteration.
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Discussion on value iteration

o After obtaining V* via VI, we can obtain an optimal policy from the greedy policy:

7*(s) = argmax |r(s,a) +'yz (s'|s,a)V*(s")

€A
@ s'eS
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Discussion on value iteration

o After obtaining V* via VI, we can obtain an optimal policy from the greedy policy:

7*(s) = argmax |r(s,a) +'yz (s'|s,a)V*(s")

€A
@ s'eS

o Alternatively, we can run Q-value iteration and compute 7* via

m*(s) = argmax Q*(s,a).
acA

Remarks: o Q-value iteration uses the following update derived from equations (1) and (2):

sa—rsaJr samax ,a/,
Qera(s,0) 7YY P/l 0) max Qu(s' ')

s’eS

o The Q-value iteration does not require knowledge of P to extract the policy 7*.

o This observation is the starting point to develop “model-free” algorithms in the sequel.
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Convergence of value iteration
Theorem (Linear Convergence of Value Iteration)

The value iteration algorithm attains a linear convergence rate, i.e.,

Ve = V¥ loo 41V = Vo

IHHEL]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 48/ 56



Convergence of value iteration

Theorem (Linear Convergence of Value Iteration)

The value iteration algorithm attains a linear convergence rate, i.e.,

Ve = Voo <AV = Vo -
Proof.

Ve = V¥ lloo = 1TVee1r = TV oo Va1 = Vo <o <A IVo = V-

Remarks: o The complexity of applying T is O (|S\2\A|)

o The number of iterations to reach e accuracy is O (log 6*1) due to linear convergence.
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Directly update the policy

o Value iteration first finds V'*, then computes the optimal policy 7* by the greedy policy.
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Directly update the policy

o Value iteration first finds V'*, then computes the optimal policy 7* by the greedy policy.

o We can also directly search for the optimal policy 7*.
Some intuition: o Starting with an initial guess m, we can iteratively perform the following motions:

1. Evaluate policy: compute the value function V™ of the current policy
= Policy evaluation
2. Improve policy: update the guess by the greedy policy w.r.t. V7™

= Policy improvement
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Policy improvement theorem

Theorem (Policy Improvement)

If a (deterministic) policy ' satisfies the following

Q7 (s,7'(s)) >V™(s) VseES, (6)
then we have V™ (s) > V7 (s) for any s € S.
Remarks: o The same result holds for a stochastic policy 7’ if Eqvr/(.1sy@7 (s,0) 2 V7™ (s) Vs€S.

o Improving the current policy by one step everywhere, we can improve the whole policy.

o It suggests a natural way of improving the current policy via

mi4+1(8) < argmax Q7 (s, a).
acA

o Indeed, V™t+1(s) > V7t (s),V s € S, and the inequality is strict if 7; is suboptimal.
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Policy iteration

Algorithm: Policy Iteration (PI) for solving MDPs

Start with an arbitrary policy guess mg
for each iteration ¢t do
(Step 1: Policy evaluation) Compute V' 7¢:
(Option 1) Iteratively apply policy value iteration, Vi <— T ™t V;, until convergence

(Option 2) Use the closed-form solution: V™t = (I — yP7™t) "1 R7t

(Step 2: Policy improvement) Update the current policy 7 by the greedy policy

mi4+1(s) = argmax | 7(s,a) + v E (s'|s,a) VTt (s")
acA s
S

end for

Remarks: o Recall that we assume that there exists a deterministic optimal policy.

o Greedy policy achieves the optimal deterministic policy.
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Comparison

Algorithm ‘ Value Update ‘ Policy Update

Value lteration (VI) Vig1 =TVs. None

Policy lteration (Pl) | Vig1 = E[r(s,a) + Zs'es P(s'|s, a)V(s’)|7rt] Greedy Policy

Algorithm ‘ Per iteration cost ‘ Number of iterations ‘ Output
Value Iteration (VI) o(Is?14]) T =028 ) | vy such that [V — V| < e
Policy lteration (P1) | O(IS|* +[SPA]) | T =o(l2{AED) V* and 7*

Observations: o VI and PI are broadly dynamic programming approaches.
o Pl converges in finite number of iterations [4] whereas VI does not [3].
o These solution mythologies are broadly known as model-based RL.

o Modified policy iteration [5] performs limited value-function updates for speed-ups.
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Convergence of policy iteration (Pl)

Theorem (Linear Convergence of Policy lteration)

Policy iteration outputs the optimal policy after O (%) iterations.

Proof.

o For simplicity, we provide just the proof sketch.
o The first step is to prove that Pl identifies a suboptimal action at a certain state every O (ﬁ)

o The proof is concluded noticing that there exists at most |S| (|.A| — 1) suboptimal actions.
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Summary |

o Basic concepts of Markov decision process (MDP)
> Policy, value functions, optimal value functions
> Bellman equations and Bellman operators

> Fixed point viewpoints

>

Existence and construction of optimal policy
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Summary |

o Basic concepts of Markov decision process (MDP)
> Policy, value functions, optimal value functions
> Bellman equations and Bellman operators

> Fixed point viewpoints

>

Existence and construction of optimal policy

o Exact solution methods for policy evaluation
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Summary |

o Basic concepts of Markov decision process (MDP)
> Policy, value functions, optimal value functions
> Bellman equations and Bellman operators

> Fixed point viewpoints

>

Existence and construction of optimal policy

o Exact solution methods for policy evaluation

o Exact solution methods for solving MDPs
> Value iteration: iteratively apply Bellman operator

> Policy iteration: alternatively execute policy evaluation and policy improvement
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Wrap Up

o Pl and VI are dynamic programming methods applicable when the transition matrix is known.
o The following week: What to do when the transition matrix is known!

o Let's start with Jupiter Notebook #1.
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Supplementary material
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Existence of an optimal policy (proof)

Proof Sketch
Assume a start from (so, ao,r0,81) = (s,a,r,s’), then
1. Define “offset” policy w(at = a|ht) := 7(at+1 = a| (s0,a0) = (s,a), ht), Markov property implies

co

E E v'r(se;at) | (s0, a0, 70, 81) = (s,a,7,8"), m| =4V 7 (s).

t=1
2. With all (so,a0,70) = (s,a,r), the set {7 |IL} will just be II itself.

3. Show that the optimal value from s1 onward is independent of (so, a0, r0) = (s,a,r),

oo
max E E 'ytr(st,at) | (s0,a0,70,81) = (s,a,7,8"), 7| =~ max Vﬁ(s/) = ymax V™ (s') = yV*(s).
T ell well well

t=1
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Existence of an optimal policy (proof)

Proof Sketch (cont.)

’
4. Let m(s) = argmax max Q™ (s,a), show this deterministic and randomized policy is optimal
acA 7 €I

V*(so) = maxE E vir(se,ai) | so =s, 7| = maxE [r(so,a0) + E Yir(se,ar) | ™
t=0

w/ el n/ €N
t=1
s
= H}aifIE r(s0,a0) +E E v'r(se, ar) | (s0,a0,70,51), 7 (8)
xle
t=1

< max E [T(so, ag) +V* (51)] <= Step 3 above
/eIl

=E [r(so, ag) + V*(s1) | 7r] <= Definition of ™ above

5. V*(s0) < E[r(so,a0) + V*(s1) | 7] < E [r(s0,a0) +7r(s1,a1) +72V*(s1) 7] <+ < V™(s0), 0

V7™ = V*, je., the proposed 7 is optimal.

Link back to the referring slide #38.
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Contraction of bellman optimality operator (proof)

Proof.
For any V',V € RIS| and s € S, we have

|(TV')(s) = (TV)(9)]

L [r s,a +’yz s'|s,a) V' (s )} — m'gx [r s,a’ +’yz P(s’|s, a')V(s/)”
flneax (rsa +'yz |saV'(s)>—(Tsa +“/Z P(s|saV(s))‘
max '\/Z P(s'|s,a)‘V'(s') — V(s

HV’ V|| maux'yZS,GSP(s/L@,a):’}/HV'fVHOO7

IN

IA

IN

which concludes the proof. Link to slide #43.
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Policy improvement theorem (proof)
Theorem (Policy Improvement)
If a (deterministic) policy ©' satisfies that,
Q" (5,7(5) > V™(s) VseS,
then V™ (s) > V™ (s) for any s € S.
Proof.
Follow the property, for any s € S, (denote s’ ~ P(:|s, 7(s)) as s’ ~ 7’)

VT(s) < Q7 (s,7'(s)) = Eps [r(SO,w’(SO)) +V7(s1)| s0 = s]
< E. [’r‘o +vQ7 (s1,7 (s1)) | so = 5]
< E.[ro +9r1 + vV (s1) | s0 = s

IN

<Ep[ro+am +9%ra+ - |so=s| = V™ (s).

Link to slide #50.
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